
Mid-exam Imperative Programming
Sept. 29 2017, 14:00-17:00h

• You can solve the problems in any order. Solutions must be submitted to the automated judge-
ment system Themis. For each problem, Themis will test ten different inputs, and checks
whether the outputs are correct.

• Grading: you get one grade point for free. The remaining nine points are based solely on the
judgment given by Themis. The first problem is worth one grade point. The remaining four
problems are worth two grade points each, of which you score the full two points if you passed
the complete test set of the problem (i.e. 10 test cases), or one grade point if you passed at least
5 (out of 10) test cases.

• Inefficient programs may be rejected by Themis. In such cases, the error will be ’time limit
exceeded’. The time limit for each problem is one second.

• The number of submissions to Themis is unlimited. No points are subtracted for multiple
submissions.

• There will be no assessment of programming style. However, accepted solutions are checked
manually for cheating: for example, precomputed answers will not be accepted, even though
Themis accepts them.

• Note the hints that Themis gives when your program fails a test.

• Needless to say: you are not allowed to work together. If plagiarism is detected, both parties
(supplier of the code and the person that sends in a copy) will be excluded from any further
participation in the course. You are not allowed to use email, phones, tablets, calculators,
etc. There is a calculator available on the exam computers (see icon on the desktop). You
are allowed to consult the reader, the book, handouts of the lecture slides, a dictionary, and
submissions previously made to Themis.

• For each problem, the first three test cases (input files) are available on Themis. These exam-
ples are the first three test cases of a test set. These input files, and the corresponding output
files, are called 1.in, 2.in, 3.in, 1.out, 2.out and 3.out. These files can be used to
test whether the output of your program matches the requested layout, so that there can be no
misunderstanding about the layout and spaces in the output.

• If you fail to pass a problem for a specific test case, then you are advised not to lose much
time on debugging your program, and continue with another problem. In the last hour of
the midterm, all input files will be made visible in Themis (not the output files).



Problem 1: Amicable pairs

A pair of positive integers is called an amicable pair if the sum of the proper divisors of each is equal
to the other number. Note that a proper divisor of a positive integer n is a number d, where 1 ≤ d < n,
that evenly divides n.

An example of a pair of amicable numbers is 220 and 284 because the sum of the proper divisors
of 220 is 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284, while the sum of the proper
divisors of 284 is 1 + 2 + 4 + 71 + 142 = 220.

Write a program that accepts two positive integers on the input, and outputs whether the pair is an
amicable pair or not. You may assume that both integers are less than 1000000000 = 109.

Example 1:
input:
220 284
output:
YES

Example 2:
input:
63020 76084
output:
YES

Example 3:
input:
42 21
output:
NO

Problem 2: Equation

In this problem you are asked to solve a simple equation. The equation can have 6 formats:

• x+<integer>=<integer>: for example x+20=42 with solution x=22.

• x-<integer>=<integer>: for example x-20=42 with solution x=62.

• <integer>+x=<integer>: for example 20+x=42 with solution x=22.

• <integer>-x=<integer>: for example 20-x=42 with solution x=-22.

• <integer>+<integer>=x: for example 22+20=x with solution x=42.

• <integer>-<integer>=x: for example 22-20=x with solution x=2.

Write a program that reads an equation from the input, and outputs the solution of the equation. Note
that all values are integers (less than 1000000 = 106), and that there are no spaces in the input.

Example 1:
input:
x+20=42
output:
x=22

Example 2:
input:
22-20=x
output:
x=2

Example 3:
input:
20+x=62
output:
x=42



Problem 3: Highest common prime factor

A prime is an integer greater than 1 that has no positive divisors other than 1 and itself. Each positive
integer greater than 1 can be written as a product of primes. This is called its prime factorization. For
example, the prime factorizations of 42 and 9940 are:

42 = 2× 3× 7 and 9940 = 2× 2× 5× 7× 71

The greatest prime that divides two positive integers evenly is called their Highest common prime
factor. If such a prime does not not exist, then their highest common prime factor is defined to be 1.
From the given factorization, it is clear that the highest common prime factor of 42 and 9940 is 7.

Write a program that accepts two positive integers on the input, and outputs their highest common
prime factor. You may assume that both integers are less than 1000000000 = 109.

Example 1:
input:
42 9940
output:
7

Example 2:
input:
12345 1646
output:
823

Example 3:
input:
55 42
output:
1

Problem 4: Fibonacci’s bunnies again

In the lecture you learned about the famous Fibonacci series. Recall the story behind this series:
Fibonacci started with a pair of baby rabbits, a baby boy rabbit and a baby girl rabbit. They were
fully grown after one year, and did what rabbits do best, so that the next year two more baby rabbits
(again a boy and a girl) were born. The next year these babies were fully grown and the first pair had
two more baby rabbits (again, miraculously a boy and a girl). Ignoring problems of in-breeding, the
next year the two adult pairs each have a pair of baby rabbits and the babies from last year mature.
Fibonacci asked himself how many rabbits a single pair can produce in the course of time with this
highly unbelievable breeding process (rabbits never die, and each year an adult pair produces a mixed
pair of baby rabbits who mature the next year). He quickly discovered that this question was answered
by the series

F0 = 1, F1 = 1, Fn = Fn−1 + Fn−2

where Fy denotes the number of pairs in year y.
In this problem we are going to make this process slightly more realistic. We still start with a single
pair of baby rabbits, and the breeding process remains the same. However, a rabbit dies after 5 years,
in other words a pair produces offspring for four years.

Write a program that reads from the input a year (a positive integer which is at most 50), and
outputs the number of rabbit pairs in that year. Note that, like in the original Fibonacci series, we start
counting from 0.

Example 1:
input:
0
output:
1

Example 2:
input:
5
output:
7

Example 3:
input:
42
output:
54270212



Problem 5: Stableford
In golf, a scoring system is used, which makes it possible for advanced and novice players to play
against each other without the advanced player always winning.

A golf course consists of 18 holes. For each hole its so-called par is known: the number of strokes
that the average professional player needs to complete the hole.

An amateur player has a so-called handicap (an integer), which is the total number of extra strokes
that he/she is expected to need more than a professional player to complete the entire golf course. The
minimum handicap is 0 and the maximum handicap is 36. These extra strokes are spread over the 18
holes of the golf course. The extra strokes are assigned to holes in order of difficulty, the so-called
indexes of the holes. The hardest hole has index 1, the easiest has index 18. Each hole has a unique
index, so there are no two holes with the same index.

For example, if a player has handicap 20 then he gets 2 extra strokes on the holes with the indexes
1 and 2 (the hardest holes), and 1 extra stroke for the remaining holes (because 20 = 18 + 2). This way,
a player has for each hole his/her personal par, which is simply the par of the hole plus the number of
extra strokes he/she gets for that hole.

In Stableford scoring, a player gets two points for a hole if the number of strokes he/she used is
his/her personal par. For each stroke that he needs less, an additional point is awarded. If a player
needs one more stroke than his personal par, then the player gets one point. If more strokes are used,
no points are awarded for the hole. The total Stableford score for the entire round of golf is the sum
of the scores of the 18 holes.
Write a program that reads from the input the score card of a player, and outputs the Stableford
score. The input consists of 19 lines. The first line contains the handicap of the player. The remain-
ing lines contain per hole the par, the index and the number of strokes that the player used for the hole.

Example:
input:
30
4 2 6
4 4 8
5 11 6
4 9 7
3 13 6
5 18 4
3 7 7
4 15 5
4 5 6
4 1 6
4 3 6
4 12 7
5 10 7
4 14 6
3 17 4
5 8 7
3 16 5
4 6 6
output:
29


